Rv2930 - fatty-acid-CoA ligase fadD26


Protein Domains

Gene Information
LocusRv2930
SymbolfadD26
Gene Namefatty-acid-CoA ligase fadD26
Location3243697 - 3245448 (+)
SpeciesMycobacterium tuberculosis H37Rv complete genome.
LengthGene:1752 bp
Protein:584 aa
External LinksTuberculist
Target Gene Information
String Protein-Protein Interactions
STITCH Chemical-Protein Interactions
Search Google Scholar
Orthologs
Orthogroup Number25808
Related GenesMkms_2878 Mkms_2879 ML2356 ML2357 ML2358 Mmcs_2834 Mmcs_2835 MSMEG_6767 MT2999 MT3000 MT3002 MT3003 MUL_2018 MUL_2019 MUL_2020 Mvan_3125 Mvan_3126 Mvan_3128 Rv2931 Rv2932 Rv2933
Transcriptional Regulation
Operons View gene in operon browser
Regulatory Network
Search for regulators of Rv2930
Expression Correlation Genes with Correlated Expression
Scatterplot of Gene Expression

Sequence
Proteins
Genomic Sequence
Community Annotations Pending Curatorial Review
FieldValueStatusCreatorDate
TermTBRXN:FACOALPREPH fatty-acid--CoA ligase (phthiocerol precursor) - ISSactivenjamshidi2012-10-05
see PMID: 15292265
E. Pérez, P. Constant et al. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J. Biol. Chem. 2004
TermTBRXN:FACOALPREPH fatty-acid--CoA ligase (phthiocerol precursor) - IDAactivenjamshidi2012-10-05
see PMID: 15292265
E. Pérez, P. Constant et al. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J. Biol. Chem. 2004
InteractionPhysicalInteraction Rv2939activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2939activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2935activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2935activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2934activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2934activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2933activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2933activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2932activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2932activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2931activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2931activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2939activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2938activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2937activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2936activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2935activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2934activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2933activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2932activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2931activeshahanup862012-10-05
Operon (Functional linkage)
authors,JS. Cox,B. Chen,M. McNeil,WR. Jacobs Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999
InteractionPhysicalInteraction Rv2939activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2938activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2937activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2936activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2935activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2934activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2933activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2932activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionPhysicalInteraction Rv2931activeshahanup862012-10-05
Operon (Functional linkage)
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
InteractionRegulatory Rv3692activeashwinigbhat2012-10-05
One hybrid System
DM. Collins, B. Skou et al. Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect. Immun. 2005
InteractionRegulatory Rv3416activeashwinigbhat2012-10-05
One hybrid System
DM. Collins, B. Skou et al. Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect. Immun. 2005
InteractionRegulatory Rv2745cactiveashwinigbhat2012-10-05
One hybrid System
DM. Collins, B. Skou et al. Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect. Immun. 2005
InteractionRegulatory Rv2034activeashwinigbhat2012-10-05
One hybrid System
DM. Collins, B. Skou et al. Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect. Immun. 2005
InteractionRegulatory Rv0445cactiveashwinigbhat2012-10-05
One hybrid System
DM. Collins, B. Skou et al. Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect. Immun. 2005
InteractionRegulatory Rv0117activeashwinigbhat2012-10-05
One hybrid System
DM. Collins, B. Skou et al. Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect. Immun. 2005
InteractionRegulatory Rv3692activeashwinigbhat2012-10-05
One hybrid System
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatory Rv3416activeashwinigbhat2012-10-05
One hybrid System
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatory Rv2745cactiveashwinigbhat2012-10-05
One hybrid System
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatory Rv2034activeashwinigbhat2012-10-05
One hybrid System
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatory Rv0445cactiveashwinigbhat2012-10-05
One hybrid System
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatory Rv0117activeashwinigbhat2012-10-05
One hybrid System
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv3692activeyamir.moreno2012-10-05
One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv3416activeyamir.moreno2012-10-05
One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv2745cactiveyamir.moreno2012-10-05
One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv1956activeyamir.moreno2012-10-05
One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv1359activeyamir.moreno2012-10-05
One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv0445cactiveyamir.moreno2012-10-05
One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv0117activeyamir.moreno2012-10-05
One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
InteractionRegulatedBy Rv0981activeyamir.moreno2012-10-05
Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
H. He, R. Hovey et al. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J. Bacteriol. 2006
InteractionRegulatedBy Rv0757activeyamir.moreno2012-10-05
Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique.
SB. Walters, E. Dubnau et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006
InteractionRegulatedBy Rv0757activeyamir.moreno2012-10-05
Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique.
SB. Walters, E. Dubnau et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006
InteractionRegulatedBy Rv3286cactiveyamir.moreno2012-10-05
Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
EP. Williams, JH. Lee et al. Mycobacterium tuberculosis SigF regulates genes encoding cell wall-associated proteins and directly regulates the transcriptional regulatory gene phoY1. J. Bacteriol. 2007
NameLong-chain fatty acyl-AMP ligase responsible for providing and loading the long-chain fatty acid starter unit onto PpsA for the generation of phthiocerol in the biosynthesis of phthiocerol dimycocerosatesactivemjackson2012-10-05
Phthiocerol dimycocerosates (PDIM), phenolic glycolipids (PGL) and para-hydroxybenzoic acid derivatives
OtherTBPWY:Phthiocerol dimycocerosates, PGL & pHBADactivemjackson2012-03-05
Long-chain fatty acyl-AMP ligase responsible for providing and loading the long-chain fatty acid starter unit onto PpsA for the generation of phthiocerol in the biosynthesis of phthiocerol dimycocerosates (phenotypic [mycobacterial recombinant strains])
OA. Trivedi, P. Arora et al. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol. Cell 2005
OtherTBPWY:Phthiocerol dimycocerosates, PGL & pHBADactivemjackson2012-03-05
Long-chain fatty acyl-AMP ligase responsible for providing and loading the long-chain fatty acid starter unit onto PpsA for the generation of phthiocerol in the biosynthesis of phthiocerol dimycocerosates (phenotypic [mycobacterial recombinant strains])
OA. Trivedi,P. Arora,V. Sridharan,R. Tickoo,D. Mohanty,RS. Gokhale Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 2004
OtherTBPWY:Phthiocerol dimycocerosates, PGL & pHBADactivemjackson2012-03-05
Long-chain fatty acyl-AMP ligase responsible for providing and loading the long-chain fatty acid starter unit onto PpsA for the generation of phthiocerol in the biosynthesis of phthiocerol dimycocerosates (phenotypic [mycobacterial recombinant strains])
authors,R. Siméone,M. Léger,P. Constant,W. Malaga,H. Marrakchi,M. Daffé,C. Guilhot,C. Chalut Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. FEBS J. 2010
OtherTBPWY:Phthiocerol dimycocerosates, PGL & pHBADactivemjackson2012-03-05
Long-chain fatty acyl-AMP ligase responsible for providing and loading the long-chain fatty acid starter unit onto PpsA for the generation of phthiocerol in the biosynthesis of phthiocerol dimycocerosates (phenotypic [mycobacterial recombinant strains])
LR. Camacho, P. Constant et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 2001
TermEC:6.2.1.3 Long-chain-fatty-acid--CoA ligase. - NRactivejjmcfadden2012-03-05
Inferred from direct assay
P. Constant, E. Perez et al. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 2002